ayny

Palladium-Catalyzed Oxidative Direct C3- and C7-Alkenylations of Indazoles: Application to the Synthesis of Gamendazole

Mohammed Naas,†,‡ Saïd El Kazzouli,*,§ El Mokhtar Essassi,‡ Mosto Bousmina,§ and Gérald Guillaumet*,[†]

†Institut de Chimie Organiq[ue](#page-3-0) et Analytique (ICOA), Université d'Orléans, UMR CNRS, 7311, BP 6759, Orléans Cedex 2 45067, France

‡ Facultédes Sciences, UniversitéMohammed V de Rabat, BP 1014, Avenue Ibn Batouta, 10000 Rabat, Morocco

 $^{\$}$ Euromed Research Institute, Engineering Division, Euro-Mediterranean University of Fes, Fès-Shore, Route de Sidi Hrazem, 30070 Fès, Morocco

ABSTRACT: The first palladium-catalyzed oxidative alkenylation of (1H)- and (2H)-indazole derivatives with various olefins is described. The use of Pd(OAc), as the catalyst and Ag₂CO₃ as the oxidant promoted the selective C3-monoalkenylation of (1H)indazoles and (2H)-indazoles, affording the desired products in good yields. An original oxidative C7-alkenylation of 3 substituted $(1H)$ -indazoles was also developed. The oxidative alkenylation of $(1H)$ -indazole was successfully applied to the total synthesis of the drug candidate gamendazole in a step- and atom-economical fashion.

The indazole system is a ubiquitous motif found in various
biologically active molecules.¹ Moreover, various drugs and
drug condidates containing indexels beye been developed such as drug candidates containing indazole have been developed such as pazopanib (Votrient),² benzyda[mi](#page-3-0)ne,³ bendazac,⁴ granisetron $(Ky$ tril), ⁵ tetrydamine (or tetridamine), 6 and gamendazole.⁷ The development of new [sy](#page-3-0)nthetic metho[d](#page-3-0)s for the [pr](#page-3-0)eparation of original [f](#page-3-0)unctionalized indazoles is t[he](#page-3-0)refore a very attr[ac](#page-3-0)tive task. The oxidative Heck-type reaction, also called the Fujiwara− Moritani reaction, has received considerable attention during the past decade.^{8,9} Although several heterocyclic systems have been alkenylated using this C−H/C-H alkenylation reaction,¹⁰ to our knowledge, $(1H)$ - and $(2H)$ -indazoles including functionalized derivatives have never been used as substrates for the [Fu](#page-3-0)jiwara reaction. Moreover, oxidative alkenylation of the six-membered ring of 6−5-bicyclic systems containing no heteroatom on the six-membered ring and at least one heteroatom on the fivemembered ring is unprecedented. Only two examples of C7 alkenylation of indole using directing groups have been reported so far. 11 Recently, we and others reported the direct arylation of both $(1H)$ -indazole¹² and $(2H)$ -indazole¹³ systems. Pursuing our re[se](#page-3-0)arch program on the development of new procedures for the C−H activation [of](#page-3-0) indazoles, we here [rep](#page-3-0)ort on a palladiumcatalyzed oxidative C3-alkenylation of $(2H)$ - and $(1H)$ -indazoles

as well as C7-alkenylation of (1H)-indazole. We also describe a concise three-step synthesis of gamendazole using direct C3 alkenylation of (1H)-indazole.

We first carried out the alkenylation of 2-methyl (2H) indazole 1 with ethyl acrylate in the presence of $Pd(OAc)₂$ as the catalyst and either $Cu(OAc)₂, CuO, or Ag₂O₃$ as the oxidant. The reactions conducted in xylene without additives afforded the C-3 alkenylated product 2 in moderate yields (44 to 70%, Table 1, entries 1−3). When AcOH, Ac₂O, or AcOH/Ac₂O was the additive to the reaction conditions, significant improve[ments in](#page-1-0) the reaction yields were noticed (Table 1, entries 4−6). Replacing the xylene solvent by dioxane in the presence or absence of additives resulted in lower y[ields \(Ta](#page-1-0)ble 1, entries 7− 9). When Ag_2CO_3 was used as the oxidant in the presence of $AcOH/Ac₂O$, a very good isolated yield o[f compo](#page-1-0)und 2 was obtained (Table 1, entry 10). Importantly, when only 5 mol % of $Pd(OAc)₂$ instead of 10 mol % was used, no significant decrease in the rea[ction yiel](#page-1-0)d was observed (Table 1, entry 11). All of the other attempts to improve the reaction yield by replacing the solvent (Table 1, entry 12), the oxi[dant \(Ta](#page-1-0)ble 1, entries 17 and

Received: [July 2](#page-1-0)4, 2015 Published: August 26, 2015

Table 1. Optimization of C3-Alkenylation of (2H)-Indazole 1

18), the additive (Table 1, entries 19 and 20), or the catalyst (Table 1, entries 21 and 22) failed (Table 1, entries 13−23).

Under the best reaction conditions identified as follows, [5 mol % of Pd(OAc)₂, 2.5 equiv of Ag₂CO₃, 1 equiv of AcOH/ Ac₂O in dioxane at 120 °C under argon], the scope and limitation of Pd-catalyzed direct alkenylation of (2H)-indazoles were examined. Various substituted indazoles 1 and 3a−h were used as starting substrates in the presence of either acrylates, acrylamide, acrylonitrile, or vinylarenes as coupling partners. The treatment of indazole 1 in the presence of acrylates led to the expected products 4a−f in very good isolated yields (77% to 93%) (Table 2). When N-tert-butylacrylamide was used as olefin, the corresponding alkenylated product 4g was obtained in 75% yield. Moderate yields were observed when either styrene or 1 ethenyl-4-methoxybenzene was used. In these cases, the desired products 4h and 4i were isolated in 57% and 65% yield, respectively (Table 2). The use of acrylonitrile as coupling partner produced the alkenylated product 4j in a moderate yield (Table 2). We then used substituted (2H)-indazoles as starting materials. The treatment of 3a−h with ethyl acrylate under the optimized reaction conditions led to the expected products 4k−r in yields ranging between 68% and 90% (Table 2).

Continuing our investigation of C−H/C−H activation of indazoles, under reaction conditions similar to those developed above, the regioselective C3-alkenylation of $(1H)$ -indazole 5 was successfully achieved, producing the expected product 6 in 67% yield (Table 3, entry 1). Further modifications of the reaction parameters (e.g., oxidant and/or additive) did not lead to any signifi[cant imp](#page-2-0)rovement in the reaction yield (Table 3, entries $2-4$).

Table 3. Optimization of C3-Alkenylation of (1H)-Indazole 5

With the optimized reaction conditions in hand, we next explored the scope of the oxidative Heck-type reaction of $(1H)$ indazoles. In the case of nonsubstituted 1-methylindazole 5 treated by methyl acrylate, cyclohexyl acrylate, acrylonitrile, or 1 ethenyl-4-methoxybenzene, the desired C3-alkenylated products 8a−d were obtained in moderate to good yields (45 to 78%, Table 4). Indazole containing a methoxy group at the 6-position

 a Amount of starting material 5 recovered. b In this case, 17% of dialkenylated indazole 8l was also isolated. ^cIn this case, the reaction times were prolonged to 48 h.

(starting material 7a) also underwent the alkenylation reaction with methyl acrylate to afford the expected product 8e in 71% yield.

As we previously reported on the direct arylation of substituted indazoles containing electron-withdrawing groups on the sixmembered ring, 14 a competition between C3- and C7alkenylation occurred when 1-methyl 5-nitroindazole 7b was treated by cycloh[exy](#page-3-0)l acrylate, which led to two products, the C3 alkenylated product 8f and the C3-/C7-dialkenylated product 8l (Table 4). This phenomenon was not observed when 1-methyl

5-nitroindazole 7b was treated by methyl acrylate. In this case, only the C3-alkenylated product 8g was obtained. In addition, when 1-methyl-6-nitroindazole 7c was treated with cyclohexyl acrylate we isolated only the C-alkenylated product 8h. The treatment of either 1-methyl 6-nitroindazole 7c or 1-methyl 7 nitroindazole 7d by methyl acrylate led to the expected products 8iand 8j in 57 and 69% yield, respectively. Surprisingly, while the direct arylation of 4-nitroindazole 7e gave only the C7-arylated product (see our previous work), 14 conversely, oxidative alkenylation gave exclusively the C3-alkenylated product 8k in 54% yield.

Very interestingly, when 8f was treated with 3 equiv of cyclohexyl acrylate, the dialkenylated product 8l was obtained in 53% yield (Scheme 1). Encouraged by this result, we decided to explore the C7-alkenylation of $(1H)$ -indazoles.

Scheme 1. C7-Alkenylation of 3-Substituted (1H)-Indazole 8f

To explore the scope and limitation of this new C7 alkenylation reaction of $(1H)$ -indazoles, 3-phenylated indazoles 9a−h were prepared¹⁴ and used as starting materials in the presence of either methyl acrylate or cyclohexyl acrylate as alkenylating agents. T[he](#page-3-0) reaction proceeded successfully, leading to the desired C7-alkenylated products 10a−h in moderate to good yields (Table 5). The reactions required long reaction times (48 h), however, to achieve total conversion. As expected, no reaction was observed when 3-phenylindazole containing no

Table 5. Scope and Limitation of C7-Oxidative Alkenylation of 3-Phenyl-(1H)-indazoles 9a−h

a
Amount of starting material 9h recovered.

substituent on the six-membered ring 9h was treated by acrylates; only the starting material was recovered in 74% yield.

Finally, we decided to apply our method to the synthesis of gamendazole, a drug candidate for male contraception, by using only three steps instead of the nine steps reported in the literature (Scheme 2).⁷ The treatment of the commercially

Scheme 2. Synthesis of Gamendazole by C3-Oxidative Alkenylation of Indazole 11

available indazole 11 by 2,4-dichloro-1-(chloromethyl)benzene led to intermediate 12 in 87% yield; we also observed the formation of a byproduct 13 in 11% yield. Regioselective C3 alkenylation of 12 with ethyl acrylate under the optimized reaction conditions gave compound 14 in 69% yield. Finally, the treatment of 14 by LiOH \cdot H₂O in a mixture of THF and MeOH led to gamendazole in 91% yield.

In conclusion, we have developed the first regioselective C3 oxidative alkenylation of both $(1H)$ - and $(2H)$ -indazoles. We have also applied the reaction conditions to the oxidative C7 alkenylation of 3-substituted $(1H)$ -indazoles, which is also the first example of regioselective oxidative alkenylation of the sixmembered rings in 6,5-heterocyclic systems without directing groups. Moreover, we highlighted the utility of our method by its application to the synthesis of the drug candidate gamendazole in only three steps.

■ ASSOCIATED CONTENT

6 Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.5b02136.

> Experimental details and characterization data for all new compounds (PDF)

■ AUTHOR INFORMATION

Corresponding Authors

*E-mail: s.elkazzouli@ueuromed.org.

*E-mail: gerald.guillaumet@univ-orleans.fr.

Notes

The authors declare no competing financial interest.

■ REFERENCES

(1) For a recent review on the biological activities of indazoles, see: Gaikwad, D. D.; Chapolikar, A. D.; Devkate, C. G.; Warad, K. D.; Tayade, A. P.; Pawar, R. P.; Domb, A. J. Eur. J. Med. Chem. 2015, 90, 707. (2) Keisner, S. V.; Shah, S. R. Drugs 2011, 71, 443.

(3) (a) Catanese, B.; Lagana, A.; Marino, A.; Picollo, R.; Rotatori, M. Pharmacol. Res. Commun. 1986, 18, 385. (b) Baldock, G. A.; Brodie, R. R.; Chasseaud, L. F.; Taylor, T. J. J. Chromatogr., Biomed. Appl. 1990, 529, 113. (c) Lang, D. H.; Rettie, A. E. Br. J. Clin. Pharmacol. 2000, 50, 311. (d) Stormer, E.; Roots, I.; Brockmoller, J. Br. J. Clin. Pharmacol. 2000, 50, 553.

(4) (a) Shen, H.; Gou, S.; Shen, J.; Zhu, Y.; Zhang, Y.; Chen, X. Bioorg. Med. Chem. Lett. 2010, 20, 2115. (b) Saso, L.; Silvestrini, B. Med. Hypotheses 2001, 56, 114. (c) Harding, J. J. Drugs Aging 1992, 2, 287.

(5) (a) Chaturvedula, A.; Joshi, D. P.; Anderson, C.; Morris, R.; Sembrowich, W. L.; Banga, A. K. Pharm. Res. 2005, 22, 1313. (b) Bermudez, J.; Fake, C. S.; Joiner, G. F.; Joiner, K. A.; King, F. D.; Miner, W. D.; Sanger, G. J. J. Med. Chem. 1990, 33, 1924.

(6) (a) Ballesteros, S.; Ramon, M. F.; Martinez-Arrieta, R. Clin. Toxicol. 2009, 47, 150. (b) Manzardo, S.; Girardello, R.; Pinzetta, A.; Coppi, G.; De Aloysio, D. Boll. Chim. Farm. 1992, 131, 113. (c) Pugliares, S.; Jacobellis, M. Minerva Ginecol. 1991, 43, 245.

(7) (a) Veerareddy, A.; Surendrareddy, G.; Dubey, P. K. Synth. Commun. 2013, 43, 2236. (b) George, I. G.; Tash, J. S.; Chakrasali, R.; Sudhakara Rao, J.; Calvet, J. P. U.S. Patent 20090197911, 2009. (c) Tash, J. S.; Chakrasali, R.; Jakkaraj, S. R.; Hughes, J.; Smith, S. K.; Hornbaker, K.; Heckert, L. L.; Ozturk, S. B.; Hadden, M. K.; Kinzy, T. G.; Blagg, B. S. J.; Georg, G. I. Biol. Reprod. 2008, 78, 1139.

(8) For recent papers on C−H alkenylation, see: Wang, D.-H.; Engle, K. M.; Shi, B.-F.; Yu, J.-Q. Science 2010, 327, 315. (b) Tsai, A. S.; Brasse, M.; Bergman, R. G.; Ellman, J. A. Org. Lett. 2011, 13, 540. (c) Liu, B.; Fan, Y.; Gao, Y.; Sun, C.; Xu, C.; Zhu, J. J. Am. Chem. Soc. 2013, 135, 468. (d) Huang, L.; Wang, Q.; Qi, J.; Wu, X.; Huang, K.; Jiang, H. Chem. Sci. 2013, 4, 2665. (e) Deb, A.; Bag, S.; Kancherla, R.; Maiti, D. J. Am. Chem. Soc. 2014, 136, 13602.

(9) For recent review papers on C−H alkenylation, see: (a) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068. (b) Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 10236. (c) Colby, D. A.; Tsai, A. S.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2012, 45, 814. (d) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651. (e) Zhou, L.; Lu, W. Chem. - Eur. J. 2014, 20, 634.

(10) For recent references on C−H alkenylation of heteroanes, see: (a) Gong, B.; Shi, J.; Wang, X.; Yan, Y.; Li, Q.; Meng, Y.; Xu, H. E.; Yi, W. Adv. Synth. Catal. 2014, 356, 137. (b) Su, Y.; Zhou, H.; Chen, J.; Xu, J.; Wu, X.; Lin, A.; Yao, H. Org. Lett. 2014, 16, 4884. (c) Kang, D.; Cho, J.; Lee, P. H. Chem. Commun. 2013, 49, 10501. (d) Liu, W.; Wang, S.; Zhang, Q.; Yu, J.; Li, J.; Xie, Z.; Cao, H. Chem. - Asian J. 2014, 9, 2436. (e) Martínez, Á. M.; Rodríguez, N.; Gómez Arrayás, R.; Carretero, J. C. Chem. Commun. 2014, 50, 6105. (f) Tang, J.; Cong, M.; Xia, Y.; Quéléver, G.; Fan, Y.; Qu, F.; Peng, L. Org. Biomol. Chem. 2015, 13, 110. (g) Yan, Z.-L.; Chen, W.-L.; Gao, Y.-R.; Mao, S.; Zhang, Y.-L.; Wang, Y.- Q. Adv. Synth. Catal. 2014, 356, 1085. (h) Wu, K.; Wu, P.; Wang, L.; Chen, J.; Sun, C.; Yu, Z. Adv. Synth. Catal. 2014, 356, 3871. (i) Kim, C.- E.; Son, J.-Y.; Shin, S.; Seo, B.; Lee, P. H. Org. Lett. 2015, 17, 908.

(11) (a) Lanke, V.; Prabhu, K. R. Org. Lett. 2013, 15, 2818. (b) Shi, J.; Yan, Y.; Li, Q.; Xu, H. E.; Yi, W. Chem. Commun. 2014, 50, 6483.

(12) (a) Ye, M.; Edmunds, A. J. F.; Morris, J. A.; Sale, D.; Zhang, Y.; Yu, J.-Q. Chem. Sci. 2013, 4, 2374. (b) Ben-Yahia, A.; Naas, M.; El Kazzouli, S.; Essassi, E. M.; Guillaumet, G. Eur. J. Org. Chem. 2012, 2012, 7075. (c) Hattori, K.; Yamaguchi, K.; Yamaguchi, J.; Itami, K. Tetrahedron 2012, 68, 7605.

(13) Ohnmacht, S. A.; Culshaw, A. J.; Greaney, M. F. Org. Lett. 2010, 12, 224.

(14) Naas, M.; El Kazzouli, S.; Essassi, E. M.; Bousmina, M.; Guillaumet, G. J. Org. Chem. 2014, 79, 7286.